Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24030195-12    https://doi.org/10.11896/cldb. 24030195
  高分子与聚合物基复合材料 |
生物质基硬碳钠离子电池负极材料预处理研究进展
张文浩, 韩文佳, 陈安祥, 周世晋, 王晓龙, 陈仪玮, 李霞*
齐鲁工业大学(山东省科学院)生物基材料与绿色造纸国家重点实验室,济南 250353
Research Progress on Pretreatment of Anode Materials for Biomass-based Hard Carbon Sodium-ion Batteries
ZHANG Wenhao, HAN Wenjia, CHEN Anxiang, ZHOU Shijin, WANG Xiaolong, CHEN Yiwei, LI Xia*
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
下载:  全 文 ( PDF ) ( 41779KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物质基硬碳因成本低廉、碳源丰富而广泛应用于钠离子电池负极材料的制备。但由于生物质前驱体组分和结构特性的局限,直接碳化制备的生物质基硬碳材料电性能难以满足需求。因此,通过在特定条件下对生物质前驱体进行预处理,调整和优化生物质前驱体的组分和结构,增强其电化学性能成为当下的研究热点。本文从预处理角度出发,首先总结了近年来生物质资源化利用预处理工艺、作用以及机理,然后综述了化学法、物理法与生物法等三种生物质基硬碳钠离子电池负极材料预处理方法的研究进展,以期为后续研究者在生物质基硬碳材料预处理工艺的选择、应用上提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文浩
韩文佳
陈安祥
周世晋
王晓龙
陈仪玮
李霞
关键词:  生物质  硬碳  钠离子电池  负极材料  预处理    
Abstract: Biomass-based hard carbon is a widely used material in the preparation of anode materials for sodium-ion batteries due to its low cost and abundance of carbon sources. However, the electrical properties of biomass-based hard carbon materials prepared by direct carbonization are difficult to meet the demand due to the limitations of biomass precursor components and structural properties. Consequently, there has been a surge in research activity aimed at optimising the components and structure of biomass precursors through the application of specific pretreatment techniques. This paper presents a comprehensive overview of the various pretreatment processes, their roles and mechanisms of biomass resource utilisation, and the latest research developments in the field of biomass-based hard carbon anode materials for sodium-ion batteries. The paper reviews the efficacy of three main categories of chemical, physical and biological pretreatment techniques, and provides a reference point for subsequent researchers engaged in the selection and application of pretreatment processes for biomass-based hard carbon materials.
Key words:  biomas    hard carbon    sodium-ion battery    anode material    pretreatment
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TM911  
  TQ35  
基金资助: 国家自然科学基金(22308179);国家重点研发计划(2020YFC1910301);山东省重点研发计划(重大科技创新工程)(2021CXGC011002);济南市“新高校20条”资助项目(20228103);齐鲁工业大学(山东省科学院)揭榜制项目(2022JBZ01-05);山东省自然科学基金(ZR2021QC158;ZR2023QB038);齐鲁工业大学人才科研项目(2023RCKY175;2023RCKY188);山东省科技型中小企业创新能力提升工程项目(2023TSGC0319)
通讯作者:  *李霞,博士,齐鲁工业大学轻工学部讲师。目前主要从事生物质基硬碳负极材料、生物质资源高值化利用以及功能纸基材料等方面的研究。lixia@qlu.edu.cn   
作者简介:  张文浩,齐鲁工业大学轻工学部硕士研究生,在李霞讲师的指导下进行研究。目前主要研究领域为生物质基硬碳负极材料的制备及电化学性质。
引用本文:    
张文浩, 韩文佳, 陈安祥, 周世晋, 王晓龙, 陈仪玮, 李霞. 生物质基硬碳钠离子电池负极材料预处理研究进展[J]. 材料导报, 2025, 39(9): 24030195-12.
ZHANG Wenhao, HAN Wenjia, CHEN Anxiang, ZHOU Shijin, WANG Xiaolong, CHEN Yiwei, LI Xia. Research Progress on Pretreatment of Anode Materials for Biomass-based Hard Carbon Sodium-ion Batteries. Materials Reports, 2025, 39(9): 24030195-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb. 24030195  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24030195
1 Xia Q, Liu H, Zhao X S. Journal of Materials Chemistry A, 2022, 10(8), 3889.
2 Balogun M S, Luo Y, Qiu W, et al. Carbon, 2016, 98, 162.
3 Cheng D, Zhou X, Hu H, et al. Carbon, 2021, 182, 758.
4 Prajapati A K, Bhatnagar A. Journal of Energy Chemistry, 2023, 4, 43.
5 Mei Y, Huang Y, Hu X. Journal of Materials Chemistry A, 2016, 4(31), 12001.
6 Desai A V, Rainer D N, Pramanik A, et al. Small Methods, 2021, 5(12), 2101016.
7 Saurel D, Orayech B, Xiao B, et al. Advanced Energy Materials, 2018, 8(17), 1703268.
8 Sun N, Qiu J, Xu B. Advanced Energy Materials, 2022, 12(27), 2200715.
9 Beda A, Taberna P L, Simon P, et al. Carbon, 2018, 139, 248.
10 Rios C D M S, Simonin L, Ghimbeu C M, et al. Fuel Processing Technology, 2022, 231, 107223.
11 Alvira D, Antorán D, Manyà J J. Chemical Engineering Journal, 2022, 447, 137468.
12 Wang S, Dai G, Yang H, et al. Progress in Energy and Combustion Science, 2017, 62, 33.
13 Cai J, He Y, Yu X, et al. Renewable and Sustainable Energy Reviews, 2017, 76, 309.
14 Berglund J, Mikkelsen D, Flanagan B M, et al. Nature Communications, 2020, 11(1), 4692.
15 Rath S, Pradhan D, Du H, et al. Advanced Composites and Hybrid Materials, 2024, 7(1), 1.
16 Figueiredo P, Lintinen K, Hirvonen J T, et al. Progress in Materials Science, 2018, 93, 233.
17 Huang D, Li R, Xu P, et al. Chemical Engineering Journal, 2020, 402, 126237.
18 Petridis L, Smith J C. Nature Reviews Chemistry, 2018, 2(11), 382.
19 Zhou S, Tang Z, Pan Z, et al. SusMat, 2022, 2(3), 357.
20 Kandhola G, Djioleu A, Carrier D J, et al. BioEnergy Research, 2017, 10, 1138.
21 Zhou S, Xue Y, Cai J, et al. Chemical Engineering Journal, 2021, 411, 128513.
22 Liu B, Liu L, Deng B, et al. International Journal of Biological Macromolecules, 2022, 222, 1400.
23 Perez-Almada D, Galán-Martín Á, Del Mar C M, et al. Sustain Energy Fuels, DOI:10. 1039/d3se90047a.
24 Li X, Kim T H, Nghiem N P. Bioresource Technology, 2010, 101(15), 5910.
25 Vaidya A A, Murton K D, Smith D A, et al. Biomass Conversion and Biorefinery, 2022, 12(11), 5427.
26 Wei K C D, Lim S, Pang Y L, et al. Biofuels, Bioproducts and Biorefining, 2020, 14(4), 808.
27 Meng X, Bhagia S, Wang Y, et al. Industrial Crops and Products, 2020, 146, 112144.
28 Sarkar D, Santiago I J, Vermaas J V. Chemical Engineering Science, 2023, 272, 118587.
29 Hou Q, Ju M, Li W, et al. Molecules, 2017, 22(3), 490.
30 Williams C L, Li C, Hu H, et al. Frontiers in Energy Research, 2018, 6, 67.
31 Serna-Loaiza S, Dias M, Daza-Serna L, et al. Sustainability, 2021, 14(1), 362.
32 Scapini T, Dos Santos M S, Bonatto C, et al. Bioresource Technology, 2021, 342, 126033.
33 Singh A, Tsai M L, Chen C W, et al. Bioresource Technology, 2023, 367, 128271.
34 Gu B J, Wang J, Wolcott M P, et al. Bioresource Technology, 2018, 251, 93.
35 Sapci Z. Bioresource Technology, 2013, 128, 487.
36 Liu Y, Sun B, Zheng X, et al. Bioresource Technology, 2018, 247, 859.
37 Zhou J, Yan B, Wang Y, et al. RSC Advances, 2016, 6(91), 88417.
38 Zhang B, Li H, Chen L, et al. Processes, 2022, 10(10), 1959.
39 Hoang A T, Nguyen X P, Duong X Q, et al. Bioresource Technology, 2023, 129398.
40 Kumar P, Kermanshahi-Pour A, Brar S K, et al. Advanced Sustai-nable Systems, 2021, 5(4), 2000275.
41 He S, Fan X, Luo S, et al. Energy Conversion and Management, 2017, 135, 291.
42 Sharma A, Aggarwal N K, Sharma A, et al. Water Hyacinth, A Potential Lignocellulosic Biomass for Bioethanol, 2020, 51.
43 Meenakshisundaram S, Fayeulle A, Leonard E, et al. Bioresource Technology, 2021, 331, 125053.
44 Koupaie E H, Dahadha S, Lakeh A B, et al. Journal of Environmental Management, 2019, 233, 774.
45 Chen D, Gao D, Huang S, et al. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105027.
46 Amnuaycheewa P, Hengaroonprasan R, Rattanaporn K, et al. Industrial Crops and Products, 2016, 87, 247.
47 Torget R, Walter P, Himmel M, et al. Applied Biochemistry and Biotechnology, 1991, 28, 75.
48 Xia L, Zhang C, Wang A, et al. Cellulose, 2020, 27, 1909.
49 Šoštarić T D, Petrović M S, Pastor F T, et al. Journal of Molecular Li-quids, 2018, 259, 340.
50 Nan F, Nagarajan S, Chen Y, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(10), 8951.
51 Tang C, Shan J, Chen Y, et al. Bioresource Technology, 2017, 232, 222.
52 Oliva A, Tan L C, Papirio S, et al. Renewable Energy, 2021, 169, 1000.
53 Swatloski R P, Spear S K, Holbrey J D, et al. Journal of the American chemical society, 2002, 124(18), 4974.
54 Zhu L, Xu A, Zhang H, et al. Current Organic Chemistry, 2019, 23(20), 2145.
55 Zakaria M R, Fujimoto S, Hirata S, et al. Applied Biochemistry and Biotechnology, 2014, 173, 1778.
56 Sandberg C, Berg J E, Engstrand P. Nordic Pulp & Paper Research Journal, 2017, 32(4), 615.
57 Marim B M, Mantovan J, Giraldo G A, et al. Journal of Chemical Technology & Biotechnology, 2021, 96(3), 630.
58 Kumar P, Pour A K, Brar S K, et al. Heliyon, DOI:10. 1016/j. he-liyon. 2023. e21811.
59 Pan Y J, Zhang L, Guo J, et al. Renewable Energy Resources, 2005(3), 33 (in Chinese).
潘亚杰, 张雷, 郭军, 等. 可再生能源, 2005(3), 33.
60 Lou C, Zhou Y, Yan A, et al. RSC Advances, 2022, 12(2), 1208.
61 Li Y, Vasileiadis A, Zhou Q, et al. Nature Energy, 2024, 1, 134.
62 Marsh H, Reinoso F R. Activated carbon, DOI:10.1002/j.1551-8833.1981.tb04748.x.
63 Stevens D, Dahn J. Journal of the Electrochemical Society, 2000, 147(4), 1271.
64 Cao Y, Xiao L, Sushko M L, et al. Nano Letters, 2012, 12(7), 3783.
65 Bommier C, Surta T W, Dolgos M, et al. Nano Letters, 2015, 15(9), 5888.
66 Zhang B, Ghimbeu C M, Laberty C, et al. Advanced Energy Materials, 2016, 6(1), 1501588.
67 Chen X, Liu C, Fang Y, et al. Carbon Energy, 2022, 4(6), 1133.
68 Anji R M, Helen M, Groß A, et al. ACS Energy Letters, 2018, 3(12), 2851.
69 Kitsu I L, Antonio E N, Martinez T D, et al. Advanced Energy Materials, 2023, 13(44), 2302171.
70 Li Z, Bommier C, Chong Z S, et al. Advanced Energy Materials, 2017, 7(18), 1602894.
71 Chen D, Zhang W, Luo K, et al. Energy & Environmental Science, 2021, 14(4), 2244.
72 Bai P, He Y, Zou X, et al. Advanced Energy Materials, 2018, 8(15), 1703217.
73 Wahid M, Gawli Y, Puthusseri D, et al. ACS Omega, 2017, 2(7), 3601.
74 Zhao X, Ding Y, Xu Q, et al. Advanced Energy Materials, 2019, 9(10), 1803648.
75 Wang P, Zhu X, Wang Q, et al. Journal of Materials Chemistry A, 2017, 5(12), 5761.
76 Dou X, Hasa I, Hekmatfar M, et al. ChemSusChem, 2017, 10(12), 2668.
77 Wang X K, Shi J, Mi L W, et al. Rare Metals, 2020, 39, 1053.
78 Wang J, Zhao J, He X, et al. Sustainable Materials and Technologies, 2022, 33, e00446.
79 Darjazi H, Bottoni L, Moazami H, et al. Materials Today Sustainability, 2023, 21, 100313.
80 Tang T, Zhu W, Lan P, et al. Chemical Engineering Journal, 2023, 475, 146212.
81 Deng W, Cao Y, Yuan G, et al. ACS Applied Materials & Interfaces, 2021, 13(40), 47728.
82 Xu T, Qiu X, Zhang X, et al. Chemical Engineering Journal, 2023, 452, 139514.
83 Thenappan M, Rengapillai S, Marimuthu S. Energies, 2022, 15(21), 8086.
84 Wang J, Yan L, Ren Q, et al. Electrochimica Acta, 2018, 291, 188.
85 Gao Y, Piao S, Jiang C, et al. Diamond and Related Materials, 2022, 129, 109329.
86 Cong L, Tian G, Luo D, et al. Journal of Electroanalytical Chemistry, 2020, 871, 114249.
87 Yan L, Wang J, Ren Q, et al. Chemical Engineering Journal, 2022, 432, 133257.
88 Yu K, Wang X, Yang H, et al. Journal of Energy Chemistry, 2021, 55, 499.
89 Tang Z. Structure and interface regulating of hard carbon anode materials for Na-ion batteries. Ph. D. Thesis, Central South University, China, 2023 (in Chinese).
唐正. 硬碳负极材料结构与界面调控及储钠性能研究. 博士学位论文, 中南大学, 2023
90 Chen L. Preparation of basswood carbon enzymolysis by bacillus licheniformis and its electrochemical performance as anode material for sodium-ion batteries. Master’s Thesis, Huazhong Agricultural University, China, 2023 (in Chinese).
陈林. 芽孢杆菌酶解椴木碳的制备及其作为钠离子电池负极材料电化学性能的研究. 硕士学位论文, 华中农业大学, 2023.
91 Song Z, Li F, Mao L, et al. ACS Sustainable Chemistry & Engineering, 2023, 11(41), 15020.
92 Li W, Nazhipkyzy M, Bandosz T J. Journal of Energy Chemistry, 2021, 57, 639.
93 Frank E, Steudle L M, Ingildeev D, et al. Angewandte Chemie International Edition, 2014, 53(21), 5262.
94 Xi Y, Huang S, Yang D, et al. Green Chemistry, 2020, 22(13), 4321.
95 Tang J J, Li X Y, Chen Y Q, et al. Materials Reports, 2024, 38(18), 23040228 (in Chinese).
唐晶晶, 李晓滢, 陈言蹊, 等. 材料导报, 2024, 38(18), 23040228.
[1] 高英力, 李昀博, 田维伟, 朱俊材, 廖美捷, 王蒴. 胶粉改性沥青预处理技术研究进展[J]. 材料导报, 2025, 39(9): 24040022-10.
[2] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[3] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[4] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[5] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[6] 唐晶晶, 李晓滢, 陈言蹊, 周柳禧, 文康, 周其杰, 陈松, 杨娟, 周向阳. 钠离子电池生物质基硬碳负极材料的研究进展[J]. 材料导报, 2024, 38(15): 23040228-13.
[7] 刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J]. 材料导报, 2024, 38(13): 23030072-11.
[8] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[9] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[10] 范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
[11] 杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
[12] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[13] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[14] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[15] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] CHEN Jian, XU Hui. Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries[J]. Materials Reports, 2017, 31(9): 36 -44 .
[3] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[4] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[5] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[6] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[7] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed